-
Volumes 84-95 (2024)
-
Volume 92
Pages 1-316 (September 2024)
-
Volume 91
Pages 1-378 (August 2024)
-
Volume 90
Pages 1-580 (July 2024)
-
Volume 89
Pages 1-278 (June 2024)
-
Volume 88
Pages 1-350 (May 2024)
-
Volume 87
Pages 1-338 (April 2024)
-
Volume 86
Pages 1-312 (March 2024)
-
Volume 85
Pages 1-334 (February 2024)
-
Volume 84
Pages 1-308 (January 2024)
-
Volume 92
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Modeling multi-zone polymerization reactor by coupling hydrodynamic and population balance equations.
• Utilization of two-fluid model to simulate the hydrodynamics.
• Investigating impact of operating conditions and design parameters on reactor performance.
• Effect of hydrodynamic conditions on particle size distribution is shown.
This research focuses on modeling a multi-zone circulating reactor (MZCR) in the polypropylene production process. In these reactors, designed for polyolefin production, small catalyst particles (20–300 μm) initiate polymerization in the presence of monomer gas. The reactor consists of two main regions: the riser and the downer. The riser operates in the fast fluidization and the downer is in the moving bed regime. Employing the two-fluid model with the Eulerian-Eulerian approach, the dynamics of both solid and gas phases were modeled by applying Newton's laws of motion and assuming spherical particles. The population balance of particles within the reactor was also coupled with the equations of motion. The simultaneous solution of these equations provides valuable insights into particle and fluid behavior, revealing trends such as the growth of polymer particles. Furthermore, the impact of various operating conditions was explored. This study also examined the effects of design parameters (gas inlet velocity, average inlet diameter, and temperature) on the system performance. For instance, it was shown that in the case where the solid circulation flux is 30 kg/(m2 s) the velocity of particles in the bed increases from 0.4 at the inlet to 1.1 m/s in the fully developed zone, when it is 43 kg/(m2 s) the velocity of particles increases from 0.3 to 1.4 m/s, and when it is 55 kg/(m2 s), it is increased from 0.22 to 1.5 m/s. Additionally, trends in particle size distribution based on temperature adjustments were revealed. This study showed that higher temperatures accelerate the polymerization reaction rate, promoting faster growth kinetics and the formation of larger particles.