- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
Concentrations and spatial distributions of organic carbon (OC) and elemental carbon (EC) in atmospheric particles were measured at 8 sites in four cities (Hong Kong, Guangzhou, Shenzhen and Zhuhai) of Pearl River Delta Region (PRDR), China during 2001 winter period and 2002 summer period. PM2.5 (particle diameter smaller than 2.5 μm) and PM10 (particle diameter smaller than 10 μm) samples were collected on pre-fired quartz filters with mini-volume samplers and analyzed using thermal optical reflectance (TOR) method. The average PM2.5 and PM10 level were 60.1 and 93.1 μg·m−3, respectively, with PM2.5 constituting 65.3% of the PM10 mass. The average OC and EC concentrations in PM2.5 were 12.0 and 5.1 μg·m−3, respectively, while those in PM10 were 16.0 and 6.5 μg·m−3, respectively. The carbonaceous aerosol accounted for 37.2% of the PM2.5 and 32.8% of the PM10. The highest concentrations of OC and EC were observed at Guangzhou city in both winter and summer seasons. The average OC/EC ratios were 2.4 for PM2.5 and 2.5 for PM10, indicating the presence of secondary organic aerosols. The OC and EC in PRDR were found to be strongly correlated (correlation coefficients > 0.6), which implied that similar emission source contribute to the ambient carbon particles.