Volume 1 Issue 1
您当前的位置:首页 > 期刊文章 > 过刊浏览 > Volume 1 (2003) > Volume 1 Issue 1
Peukert, W. (2003). Particle properties — promise and neglect. China Particuology, 1(1), 13-19. https://doi.org/10.1016/S1672-2515(07)60094-3
Particle properties — promise and neglect
Wolfgang Peukert *
Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 4, 91058 Erlangen, Germany
10.1016/S1672-2515(07)60094-3
Volume 1, Issue 1, April 2003, Pages 13-19
Received 31 March 2003, Accepted 4 April 2003, Available online 30 November 2007.
E-mail: W.Peukert@mvt.uni-erlangen.de

Highlights
Abstract

We see two major trends in Particle Technology. First, the focus is shifted from unit operations towards functional products, i.e. towards product engineering. Second, modeling will become more and more important. Processes cannot yet be designed from basic molecular understanding. Nanotechnology, however, begins to bridge this gap between molecules and particles and may thus open new ways not only for the production and handling of particulate matter but also for the engineered design of advanced material properties. Starting from the concept of product engineering we investigate the basic preconditions for tailoring nanoparticulate properties, i.e. the control of the particle interactions. Nanotechnology can only be transferred to industrial production if the interactions are effectively controlled.

Material and particle properties are essential for predictive models. Although strong tools like MD, DEM or population balance models are available, these models are only predictive if realistic material and particle properties are available which is often not the case. We show for selected examples how particle properties can be obtained by studying the physically relevant elementary processes. The impact breakage behavior of many different materials is described by a master curve. Particle adhesion can be modeled if the roughness of particle and substrate and the Hamaker constant are known. The latter is obtained from adsorption studies.


Graphical abstract
Keywords
product engineering; nanoparticles; surface forces; comminution; adhesion