- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
Chitosan microcapsules were prepared by a method involving emulsification and crosslinking. The effects of surfactants and acid type for dissolving chitosan on the characteristics of chitosan microcapsules were investigated. The results showed that the mixed surfactant consisting of Span80 and Tween60 had an obvious effect on reducing the size of the microcapsules. The two-surfactant complex, formed on the basis of hydrogen bonding, strengthened the interfacial membrane in the emulsion, thus decreasing not only the size of the microcapsules but also the coalescence of dispersed chitosan liquid drops. In the case of monoacid such as hydrochloric acid or acetic acid for dissolving chitosan, the chitosan microcapsules obtained were spherical in shape with smooth surfaces. For diacids or triacid, the chitosan microcapsules obtained were also spherical, but their surfaces were covered by folds and crinkles. The number of carboxyl groups in the acids used influenced the chemical crosslinking between chitosan and the crosslinker (glutaraldehyde) as well as the morphology of the particles. For diacids or triacid, physical crosslinking occured due to electrostatic force, accompanied by substantial decrease of covalent crosslinking, leading to decreased strength of the microcapsules as shown by the collapse of microcapsule walls and the formation of multiple folds and crinkles on their surfaces.