- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
The multi-scale structures of complex flows in chemical engineering have been great challenges to the design and scaling of such systems, and multi-scale modeling is the natural way in response. Particle methods (PMs) are ideal constituents and powerful tools of multi-scale models, owing to their physical fidelity and computational simplicity. Especially, pseudo-particle modeling (PPM, Ge & Li, 1996; Ge & Li, 2003) is most suitable for molecular scale flow prediction and exploration of the origin of multi-scale structures; macro-scale PPM (MaPPM, Ge & Li, 2001) and similar models are advantageous for meso-scale simulations of flows with complex and dynamic discontinuity, while the lattice Boltzmann model is more competent for homogeneous media in complex geometries; and meso-scale methods such as dissipative particle dynamics are unique tools for complex fluids of uncertain properties or flows with strong thermal fluctuations. All these methods are favorable for seamless interconnection of models for different scales.
However, as PMs are not originally designed as either tools for complexity or constituents of multi-scale models, further improvements are expected. PPM is proposed for microscopic simulation of particle-fluid systems as a combination of molecular dynamics (MD) and direct simulation Monte-Carlo (DSMC). The collision dynamics in PPM is identical to that of hard-sphere MD, so that mass, momentum and energy are conserved to machine accuracy. However, the collision detection procedure, which is most time-consuming and difficult to be parallelized for hard-sphere MD, has been greatly simplified to a procedure identical to that of soft-sphere MD. Actually, the physical model behind such a treatment is essentially different from MD and is more similar to DSMC, but an intrinsic difference is that in DSMC the collisions follow designed statistical rules that are reflection of the real physical processes only in very limited cases such as dilute gas.
PPM is ideal for exploring the mechanism of complex flows ab initio. In final analysis, the complexity of flow behavior is shaped by two components on the micro-scale: the relative displacements and interactions of the numerous molecules. Adding to the generality of the characteristics of complex system as described by Li and Kwauk (2003), we notice that complex structures or behaviors are most probably observed when these two components are competitive and hence they must compromise, as in the case of emulsions and the so-called soft-matter that includes most bio-systems. When either displacement or interaction is dominant, as in the case of dilute gas or solid crystals, respectively, complexity is much less spectacular. Most PMs consist explicitly of these two components, which is operator splitting in a numerical sense, but it is physically more meaningful and concise in PPM.
The properties of the pseudo-particle fluid are in good conformance to typical simple gas (Ge et al., 2003; Ge et al., 2005). The ability of PPM to describe the dynamic transport process on the micro-scale in heterogeneous particle-fluid systems has been demonstrated in recent simulations (Ge et al., 2005). Especially, the method has been employed to study the temporal evolution of the stability criterion in the energy minimization multi-scale model (Li & Kwauk, 1994), which confirms its monotonously asymptotic decreasing as the model has assumed (Zhang et al., 2005). Massive parallel processing is also practiced for simulating particle-fluid systems in PPM, indicating an optimistic prospect to elevate the computational limitations on their wider applications, and exploring deeper underlying mechanism in complex particle-fluid systems.