- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
b SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
The objective of this study was to characterize the elemental carbon and organic carbon (EC and OC, respectively) content of aerosol particles (PM2.5) collected at Tongliao, a site in the Horqin Sandland of northeastern China. During spring 2005, the PM2.5 mass concentration was 126±71 μg·m−3, with higher dust concentrations during five dust storms than on non-dusty days (255±77 vs. 106±44 μg·m−3). The average OC and EC concentrations in PM2.5 determined by a thermal/optical reflectance method were 15.7±7.3 μg·m−3 and 3.3±1.7 μg·m−3, respectively, and carbonaceous aerosol accounted for 9.9% of the PM2.5 mass during dust storms compared to 21.7% on normal days. The average ratios of OC to EC during dust storms were similar to those on non-dusty days, and the correlation coefficient between OC and EC was high, 0.86. The high OC/EC ratios, the distributions of eight carbon fractions, and the strong relationship between K with OC and EC indicate that rural biomass burning was the dominant contributor to the regional carbonaceous aerosol.