- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
The status of current knowledge on size-dependent aerosol removal by dry and wet processes, including dry deposition and impaction and nucleation scavenging, is reviewed. The largest discrepancies between theoretical estimations and measurement data on dry deposition and below-cloud scavenging are for submicron particles. Early dry deposition models, which developed based on chamber and wind tunnel measurements, tended to underestimate dry deposition velocity (Vd) for submicron particles by around one order of magnitude compared to recent field measurements. Recently developed models are able to predict reasonable Vd values for submicron particles but shift unrealistically the predicted minimum Vd to larger particle sizes. Theoretical studies of impaction scavenging of aerosol particles by falling liquid drops also substantially underestimate the scavenging coefficients for submicron particles. Empirical formulas based on field measurements can serve as an alternative to the theoretical scavenging models. Future development of size-resolved impaction scavenging models needs to include more precipitation properties (e.g., droplet surface area) and to be evaluated by detailed cloud microphysical models and available measurements. Several recently developed nucleation scavenging parameterizations for in-cloud removal of interstitial aerosol give comparable results when evaluated against parcel models; however, they need to be verified once suitable field measurements are available. More theoretical and field studies are also needed in order to better understand the role of organic aerosols in the nucleation scavenging process.