- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
The discrete element model (DEM) is a very promising modelling strategy for two-phase granular systems. However, owing to a lack of experimental measurements, validation of numerical simulations of two-phase granular systems is still an important issue. In this study, a small two-dimensional gas-fluidized bed was simulated using a discrete element model. The dimensions of the simulated bed were 44 mm × 10 mm × 120 mm and the fluidized particles had a diameter dp = 1.2 mm and density ρp = 1000 kg/m3. The comparison between DEM simulations and experiments are performed on the basis of time-averaged voidage maps. The drag-law of Beetstra et al. [Beetstra, R., van der Hoef, M. A., & Kuipers, J. A. M. (2007b). Drag force of intermediate Reynolds number flow past mono- and bidispersed arrays of spheres. AIChE Journal, 53, 489–501] seems to give the best results. The simulations are fairly insensitive to the coefficient of restitution and the coefficient of friction as long as some route of energy dissipation during particle–particle and particle–wall contact is provided. Changing the boundary condition of the gas phase at the side-walls from zero-slip to full-slip does not affect the simulation results. Care is to be taken that the cell sizes are chosen so that a reasonable number of particles can be found in a fluid cell.