- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
Nine heterogeneous reactions (uptake of H2O2, HNO3, HO2, N2O5, NO2, NO3, O3, OH and SO2 on mineral aerosol surfaces) are incorporated into a Regional Air Quality Model System (RAQMS) to investigate their impacts on tropospheric chemistry in East Asia during the dust storm period in March 2006. Comparison with observations shows the model system well represents the behaviors of the gaseous and aerosol species. Most of the reaction probability γ values used for this study are the best estimation specifically for dust samples from deserts of China, derived from analysis of a number of recent laboratory studies. There are large variations in gas and aerosol concentrations while taking heterogeneous reactions on mineral aerosol surface into account, especially during dust storm events. The domain-averaged monthly mean percentage changes in SO2, NO2, O3, HNO3, NH3, total sulfate, total nitrate and total ammonium concentrations are −4.4%, −3.8%, −2.1%, −22.0%, 12.7%, 6.6%, 26.1%, and −9.5%, respectively below 3 km. These changes indicate the considerable perturbation of heterogeneous reactions on mineral aerosol surface to tropospheric chemical system and components. The strength of heterogeneous reactions is determined by both reaction probability and gas precursor concentration. Among the nine reactions, dust uptakes of HNO3, SO2, and N2O5 exert relatively large influences on the other chemical components, whereas the reactions regarding H2O2, HO2, and OH have little impacts.