- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
Composite photocatalysts with TiO2 porous shell and magnetic core were synthesized by using NiFe2O4 as a magnetic core, SiO2 as an intermediate layer and polyethylene glycol with molecular weight of 1000 (PEG 1000) as a template direction agent. The samples were characterized with N2 adsorption–desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM) and ultraviolet–visible (UV–vis) spectroscopy. The results showed that the obtained composites are spherical particles about 50 nm in diameter. The mesoporous TiO2 with magnetic core calcined at 350 °C, 450 °C, and 550 °C was found to have, respectively, different specific surface areas (94, 86, and 68 m2/g) and average pore sizes (1.4, 2.2, and 2.8 nm). The photocatalytic activity was investigated for degradation of nitrobenzene under UV irradiation. Nitrobenzene was decomposed in 300 min under irradiation of an 8 W UV lamp with a peak wavelength of 253.7 nm. The composite nanoparticles exhibited high photocatalytic efficiency and super paramagnetic nature for cleaning polluted water by magnetic separation.