- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
► Introduced a WMLE (wavelength-multiplexed laser extinction) technique.
► Systematically examined WMLE's application to two-phase flows.
► Evaluated applicable range of WMLE for simultaneous vapor and droplet measurements.
Multiphase flows involving liquid droplets in association with gas flow occur in many industrial and scientific applications. Recent work has demonstrated the feasibility of using optical techniques based on laser extinction to simultaneously measure vapor concentration and temperature and droplet size and loading. This work introduces the theoretical background for the optimal design of such laser extinction techniques, termed WMLE (wavelength-multiplexed laser extinction). This paper focuses on the development of WMLE and presents a systematic methodology to guide the selection of suitable wavelengths and optimize the performance of WMLE for specific applications. WMLE utilizing wavelengths from 0.5 to 10 μm is illustrated for droplet size and vapor concentration measurements in an example of water spray, and is found to enable unique and sensitive Sauter mean diameter measurement in the range of ∼1–15 μm along with accurate vapor detection. A vapor detection strategy based on differential absorption is developed to extend accurate measurement to a significantly wider range of droplet loading and vapor concentration as compared to strategies based on direct fixed-wavelength absorption. Expected performance of the sensor is modeled for an evaporating spray. This work is expected to lay the groundwork for implementing optical sensors based on WMLE in a variety of research and industrial applications involving multi-phase flows.