- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
► Imaginary part of refractive index of the cylinder was measured with rainbow technique.
► A cylinder of red ink solution attached at a capillary tip was measured.
► Relationship between imaginary part of refractive index and ink concentration is linear.
► The relative error of the imaginary part measurement is less than 3.4%.
Rainbow refractometry is widely used to measure the radius and real part of refractive index of a cylinder. However, studies on the detection of imaginary part of the refractive index with rainbow technique were scarce. This paper presents a new method for simultaneously measuring the radius, real and imaginary part of the refractive index of a cylinder, on the basis of the Airy theory and the Bouguer theory. The rainbows produced by the illuminated cylinder at a capillary exit are captured by a CCD camera in a lab-scale system, and then processed by the proposed method. Experimental results showed that the radius, real and imaginary part of the refractive index can be accurately determined when the SNR (signal to noise ratio) of the ripple structure is sufficiently high. However, the SNR of the ripple structure gradually decreases with decreasing scattering intensity of the cylinder, leading to larger measurement errors of the radius and real part of the refractive index. The relative error of the imaginary part of the refractive index derived from the measurement errors of the radius and real part of the refractive index, is less than 3.4%.