- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Stop flow lithography enabled the synthesis of a library of non-spherical composite particles.
• SiO2 and Al2O3 shape analogues were realized through polymer burn-off and sintering.
• SEM confirmed the particle morphology.
• XRD analyses confirmed the composition and crystal structure of the ceramic particles.
Non-spherical micron and nano-sized particles and their composites have become essential in select application areas of optics, wear resistance, personnel protection, chemical mechanical polishing, and biomedicine. In this paper, the synthesis of composite and ceramic non-spherical particles using stop flow lithography is reported. Precursor suspensions of poly(ethylene glycol) diacrylate, 2-hydroxy-2-methylpropiophenone and SiO2 or Al2O3 are prepared. The precursor suspension flows through a microfluidic device mounted on an upright microscope and is polymerized in an automated process. A photomask patterned with transparent geometric features, which define the cross-sectional shapes of the particles, masks the UV light to synthesize micron sized particles. Particles with axial dimensions ranging from 35 to 167 μm were synthesized. Control of device channel depth and objective lens magnification enables the manipulation of the particle size. Composite particles in triangular, square, pentagonal, hexagonal, and circular cross sections were synthesized. Subsequently, the transformation of the composite particles into the corresponding metal oxide particles was achieved through polymer burn-off and sintering.