- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• ZrO2-7wt%Y2O3 (7YSZ) hollow spheres were prepared by atmospheric plasma spray with 7YSZ powders.
• The as-prepared hollow spheres have similar composition and phases to the raw 7YSZ powders.
• No phase transformation appeared when annealing temperature below 1400 °C.
• Segregation of doped Mg, Al in produced spheres during APS and annealing processes was observed.
Yttria-stabilized-zirconia (YSZ) hollow spheres are widely utilized for their novel physical and chemical properties. However, developing a simple and low-cost method for preparing such hollow spheres still remains a great challenge. In this paper, an atmospheric plasma spray (APS) method is introduced, and the formation mechanism of hollow 7YSZ (ZrO2-7wt%Y2O3) spheres is presented. The hollow sphere morphology was observed by scanning electron microscopy (SEM) when agglomerated and sintered 7YSZ powders were used. Additionally, additive composition changes, phase transformations, and the thermal behavior of 7YSZ powders were analyzed by energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD), thermogravimetric analysis (TG) and differential scanning calorimeter analysis (DSC). Furthermore, the phase transformations of agglomerated and sintered 7YSZ powders, 7YSZ hollow spheres that annealed at various temperatures for different times are analyzed.