- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A simple method was developed to study micromechanical properties of hydrogel microspheres.
• Force-deformation data of PNIPAM hydrogel microspheres fitted well with Hertz theory.
• Compositions of PNIPAM microspheres significantly affected the micromechanical properties.
• Microsphere with larger thermo-responsive volume change had lower modulus of elasticity.
• Moduli of elasticity of PNIPAM microspheres at 37 °C was much larger than that at 25 °C.
Temperature-responsive poly(N-isopropylacrylamide) (PNIPAM) hydrogel microspheres have attracted extensive attention because of their promising diverse biomedical applications. A quantitative understanding of the micromechanical properties of these microspheres is essential for their practical application. Here, we report a simple method for the characterization of the elastic properties of PNIPAM hydrogel microspheres. The results show that PNIPAM hydrogel microspheres exhibit elastic deformation and the obtained force-deformation experimental data fits the Hertz theory well. The moduli of elasticity of the PNIPAM hydrogel microspheres prepared under different conditions were systematically investigated in this work for the first time. The PNIPAM hydrogel microsphere composition significantly affects their micromechanical properties and their temperature sensitivity behavior. PNIPAM hydrogel microspheres with a larger equilibrium volume change have a lower modulus of elasticity. The modulus of elasticity of the PNIPAM hydrogel microspheres at body temperature (37 °C, above the lower critical solution temperature (LCST) of PNIPAM) is much higher than that at room temperature (25 °C, below the LCST of PNIPAM) because of thermo-induced volume shrinkage and an increase in stiffness. These results provide valuable guidance for the design of smart materials for practical biomedical applications. Moreover, the simple microcompression method presented here also provides a versatile way to investigate the micromechanical properties of microscopic biomedical materials.