- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• An organic silane acrylate resin (PMBK) was synthesized by free-radical solution polymerization.
• Al particles were encapsulated in inorganic–organic films with PMBK and TEOS via one-step process.
• An organic silane monomer was used because of its higher copolymerization capacity.
• PMBK-SiO2/Al exhibited better anticorrosion performance while retaining its glossiness.
• Adhesive performance of Al particles in paint films with PMBK-SiO2/Al was better than that with SiO2/Al and raw Al.
An organic silane acrylate resin (PMBK) was synthesized by free-radical solution polymerization using methyl methacrylate, butyl acrylate and (3-methacryloxypropyl)trimethoxysilane as monomers. Aluminum (Al) particles were then encapsulated in inorganic–organic hybrid films that were prepared by hydrolysis and condensation of PMBK and tetraethyl orthosilicate (TEOS) on the surface of Al pigments. Characterization results showed that PMBK and TEOS could simultaneously hydrolyze and condense with hydroxyl groups on the surface of the Al particles to form composite Al particles coated with inorganic–organic hybrid films. Compared with raw Al particles, the corrosion resistance and adhesive properties of paint films containing the composite Al particles were improved greatly, while the glossiness of the paint films decreased slightly, from 48.6° to 47.0°. In alkaline media (pH 11), the volume of evolved H2 of composite Al particles was only 3.5 mL, whereas that of raw Al was 83.5 mL. The glossiness of paint films containing composite Al particles decreased by 1.66% after immersion in alkaline media for 24 h, whereas that of raw Al decreased by 14.82%. Peel-off tests of the paint films showed that the composite particles moved slightly away from the paint films. In contrast, the raw Al particles were seriously desquamated, suggesting encapsulation of hybrid films can greatly improve the adhesive properties of Al particles in paint films.