- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A typical biomass-burning plume and urban/industrial emission were observed over Shanghai.
• Remote sensing and sample measurements were used to assess impact of biomass-burning.
• Optical characteristics of biomass-burning plume differed from those of other local emissions.
• Fine particles in atmosphere increased significantly under the influence of biomass-burning.
Anthropogenic aerosols have significant impacts on the environment and human health in the Yangtze River Delta region, one of the most densely populated regions in the world. A biomass-burning plume swept across this area (Shanghai) in May 2009, leading to changes in the physical and optical properties of aerosols, which were investigated using ground-based remote sensing and in situ measurements via comparisons with dust pollution and background conditions. Experiments show that the biomass-burning plume led to an increase in the average aerosol optical depth (AOD) at 500 nm from 0.73 to 1.00 (37% higher), an absorption Angstrom exponent (AAE) of 1.48, and an increase in the Angstrom exponent (α) up to 1.53. Furthermore, local dust aerosols derived from road dust and/or construction dust also led to higher values of AOD (2.68) and AAE (2.16), and a daily average value of α of 1.05. For the biomass-burning plume, the aerosol particles exhibited significant variations in short-wavelength spectra. The single scattering albedo at 670 nm decreased remarkably under the influence of the biomass-burning plume, indicating the significant absorptive ability of the biomass-burning pollution and higher ratio of absorption aerosols within the plume. Under the effects of the biomass-burning, the volume concentration of fine-mode aerosols increased significantly and the PM-fine/PM-coarse volume concentration ratio reached 12.33. This relatively large change in fine-mode particles indicates that biomass-burning has a greater impact on fine-mode aerosols than on coarse-mode aerosols.