- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
Honglei Wang a, Bin Zhu a *, Zefeng Zhang a, Junlin An a, Lijuan Shen b
• Chemical composition, hourly counts, and sizes of carbonaceous particles were measured using SPAMS.
• Carbonaceous particles were divided into seven single-particle types to explore the mixing during haze.
• Fraction of EC-secondary reached 16.6% on hazy days, four times greater than on clear days.
Chemical composition, hourly counts, and sizes of atmospheric carbonaceous particles were measured to investigate their mixing state on clear and hazy days. 623,122 carbonaceous particles with sizes 0.2–2.0 μm was analyzed using a single-particle aerosol mass spectrometer from 1st to 17th January 2013. Particle types included biomass/biofuel burning particles (biomass), element carbon (EC-dominant) particles that were also mixed with biomass/biofuel burning species (EC-biomass) or secondary species (EC-secondary), organic carbon (OC), internally mixed OC and EC (OCEC), ammonium-containing (ammonium) and sodium-containing (sodium) particles. On clear days the top ranked carbonaceous particle types were biomass (48.2%), EC-biomass (15.7%), OCEC (11.1%), and sodium (9.6%), while on hazy days they were biomass (37.3%), EC-biomass (17.6%), EC-secondary (16.6%), and sodium (12.7%). The fractions of EC-secondary, ammonium (10%), and sodium particle types were elevated on hazy days. Numbers of EC-secondary particles were more than four times those on clear days (4.1%). Thus, carbonaceous particles mixed with ammonium, nitrate and sulfate during aging and transport, enhancing their light extinction effects and hygroscopic growth under high relative humidity on hazy days, further reducing visibility. Our real-time single-particle data showed that changes to mixing state had a significant impact on light extinction during haze events in Nanjing.