- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A differentially weighted DSMC method was developed for particle collisions.
• Mono- and bidisperse high-inertia particle flows were simulated to validate the DW-DSMC method.
• The momentum conservation scheme proposed was able to conserve total mass, momentum and energy.
• Improved resolution was acquired using DW-DSMC, compared with equally weighted DSMC.
• Computational cost was largely reduced using DW-DSMC, compared to DNS.
In gas–solid flows, particle–particle interaction (typical, particle collision) is highly significant, despite the small particles fractional volume. Widely distributed polydisperse particle population is a typical characteristic during dynamic evolution of particles (e.g., agglomeration and fragmentation) in spite of their initial monodisperse particle distribution. The conventional direct simulation Monte Carlo (DSMC) method for particle collision tracks equally weighted simulation particles, which results in high statistical noise for particle fields if there are insufficient simulation particles in less-populated regions. In this study, a new differentially weighted DSMC (DW-DSMC) method for collisions of particles with different number weight is proposed within the framework of the general Eulerian–Lagrangian models for hydrodynamics. Three schemes (mass, momentum and energy conservation) were developed to restore the numbers of simulation particle while keeping total mass, momentum or energy of the whole system unchanged respectively. A limiting case of high-inertia particle flow was numerically simulated to validate the DW-DSMC method in terms of computational precision and efficiency. The momentum conservation scheme which leads to little fluctuation around the mass and energy of the whole system performed best. Improved resolution in particle fields and dynamic behavior could be attained simultaneously using DW-DSMC, compared with the equally weighted DSMC. Meanwhile, computational cost can be largely reduced in contrast with direct numerical simulation.