- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A simplified method for measuring multiphase flow using an array capacitance sensor was proposed.
• Non-uniformity of sensitivity map was used to directly extract regional concentrations.
• With this method, the number of measured capacitances can be reduced largely.
We propose a twin-array capacitance (TAC) sensor for the measurement of concentration, velocity, and flowrate of gas–solid two-phase flow. Using the sensitivity non-uniformity of a neighboring electrode, the regional concentration of the cross-section was reconstructed directly. Additionally, the finite element method was used to analyze the capacitance of the sensors composed of a different number of electrodes. TAC sensors with 4, 6, and 8 electrodes were found to be the best for regional concentration measurements. Based on this, the 8-electrode twin-plane electrical capacitance tomography (ECT) sensor, the 4-electrode TAC sensor, and the 6-electrode TAC sensor were used to measure the concentration, velocity, and flowrate of granules in granular flow. The flowrates measured by ECT and TAC were compared with the flowrate obtained by a gravity sensor to verify the measurement accuracy. Experiments on vertical and inclined pipelines with granular flow were carried out. We found that the flowrate accuracy of the 4-electrode TAC is distinctly better than that of the 6-electrode TAC in the vertical pipeline while the flowrate accuracy of the 4-electrode TAC and the 6-electrode TAC were similar for the inclined pipeline.