- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Mixed convection of alumina–water nanofluid inside a vertical annulus was investigated.
• Modified two-component heterogeneous model for the nanofluid was used.
• Asymmetric heating at the walls changes the direction of nanoparticle migration.
• The efficacy of using nanofluids is always reduced for heat flux ratio ɛ > 1.
• Using smaller nanoparticles enhances the efficacy of using nanofluids.
A theoretical investigation was conducted of laminar fully developed mixed convection of alumina–water nanofluid through a vertical annulus, to improve its heating/cooling performance. We focused on controlling the nanoparticle migration and studying how it affected the heat transfer rate and pressure drop. Because the nanoparticles have very small dimensions, we only considered Brownian motion and thermophoretic diffusivity as the main causes of nanoparticle migration. Because thermophoresis is very sensitive to temperature gradients, we imposed various temperature gradients using asymmetric heating. Considering hydrodynamically and thermally fully developed flow, the governing equations were reduced to two-point ordinary boundary value differential equations and were solved numerically. The imposed thermal asymmetry changed the direction of nanoparticle migration and distorted the velocity, temperature, and nanoparticle concentration profiles. Moreover, we found optimum values for the radius ratio (ζ) and heat flux ratio (ɛ); with these optimum values, the nanofluid enhanced the efficacy of the system.