- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Three methods were used to measure boundary layer height (BLH) under different sky conditions.
• GPS sounding is the most accurate, but could not capture the diurnal evolution of BLH.
• WPR is a promising method, but did not work well for determining the nocturnal BLH of the SBL.
• MPL method is accurate but unable to deal with multi-layer structure and sensitivity to moisture.
Boundary-layer height (BLH) under clear, altostratus and low stratus cloud conditions were measured by GPS sounding, wind profiler radar, and micro-pulse lidar during the atmospheric radiation measurement experiment from Sep. to Dec. 2008 in Shouxian, Anhui, China. Results showed that during daytime or nighttime, regardless of cloud conditions, the GPS sounding was the most accurate method for measuring BLH. Unfortunately, because of the long time gap between launchings, sounding data did not capture the diurnal evolution of the BLH. Thus, wind profile radar emerged as a promising instrument for direct and continuous measurement of the mixing height during the daytime, accurately determining BLH using the structure parameter of the electromagnetic refractive index. However, during nighttime, radar was limited by weak signal extraction and did not work well for determining the BLH of the stable boundary layer, often recording the BLH of the residual layer. While micro-pulse lidar recorded the evolution of BLH, it overestimated the BLH of the stable boundary layer. This method also failed to work under cloudy conditions because of the influence of water vapor. Future work needs to develop a method to determine BLH that combines the complimentary features of all three algorithms.