- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Three numerical methods were compared to experimental data of a cold flow spouted fluidized bed.
• Two-fluid model was able to predict the flow pattern for the small mass flow rate.
• Euler–Lagrange MP-PIC and two-fluid methods were more appropriate for macroscale applications.
• Euler–Lagrange DEM was more appropriate to catch flow pattern details at different mass flow rates.
This work focuses on a comparison between three different numerical CFD methods, namely Euler–Euler, Euler–Lagrange-stochastic, and Euler–Lagrange-deterministic, to treat a dense spouted bed. A simple cold flow experiment was used to investigate the hydrodynamics of a gas–solid flow in a three dimensional lab-scale spouted bed. In this context, two different air mass flow rates, 0.005 and 0.006 kg/s, were applied during fluidization. The experimental bed behaviour was recorded with a high-speed camera to validate the numerical predictions in terms of bubble size, bed expansion rate, and particle velocities at different reactor heights. The numerical setup was kept similar between all three modelling approaches. At both gas mass flow rates all three approaches are able to capture the overall bed expansion. However, at higher gas mass flow rates, discrepancies between experiment and simulation increase for the Euler–Euler and Euler–Lagrange-stochastic models. The Euler–Lagrange deterministic model most accurately predicts the flow pattern at both mass flow rates. The main reasons for discrepancies between simulation and experiment result from modelling of the collision and friction forces.