- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A Markov chain model of mixing glass beads of three dissimilar diameters was proposed.
• Optimum mixing time for entire mixture did not coincide with that of individual components.
• The model was experimentally validated.
• Combining the model with DEM simulation may improve its efficiency at low computational time.
This paper presents a simple but informative mathematical model to describe the mixing of three dissimilar components of particulate solids that have the tendency to segregate within one another. A nonlinear Markov chain model is proposed to describe the process. At each time step, the exchange of particulate solids between the cells of the chain is divided into two virtual stages. The first is pure stochastic mixing accompanied by downward segregation. Upon the completion of this stage, some of the cells appear to be overfilled with the mixture, while others appear to have a void space. The second stage is related to upward segregation. Components from the overfilled cells fill the upper cells (those with the void space) according to the proposed algorithm. The degree of non-homogeneity in the mixture (the standard deviation) is calculated at each time step, which allows the mixing kinetics to be described. The optimum mixing time is found to provide the maximum homogeneity in the ternary mixture. However, this “common” time differs from the optimum mixing times for individual components. The model is verified using a lab-scale vibration vessel, and a reasonable correlation between the calculated and experimental data is obtained.