- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Bubble-to-emulsion phase mass transfer in single-bubble fluidized beds was studied with DPM model.
• Simulated mass transfer coefficients were compared to correlations from the literature.
• The influence of emulsion phase concentration profiles on mass transfer was analyzed.
• Effect of diffusion in Geldart A particle systems was underestimated by most existing correlations.
A classical Euler–Lagrangian model for gas–solid flows was extended with gas component mass conservation equations and used to obtain fundamental insights into bubble-to-emulsion phase mass transfer in bubbling gas–solid fluidized beds. Simulations of injected single rising bubbles under incipient fluidization conditions were carried out, using Geldart-A and -B particles. Phenomena observed in the simulations and those of various theoretical models used to derive phenomenological models were compared to challenge the assumptions underlying the phenomenological models. The bubble-to-emulsion phase mass transfer coefficients calculated for the simulations using Geldart-B particles were in a good agreement with predictions made using the Davidson and Harrison (1963) model. The bubble-to-emulsion phase mass transfer coefficients for Geldart-A particles were, however, much smaller than the predictions obtained from theoretical models (e.g. Chiba and Kobayashi (1970)). The newly developed model allows a detailed analysis of various hydrodynamic aspects and their effects on the mass transfer characteristics in and around rising bubbles in fluidized beds.