- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Core–shell PLA/PLGA–pNIPAM nanoparticles were synthesized as a biocompatible drug carrier.
• Ramipril-loaded PLGA–pNIPAM core–shell NPs exhibited higher entrapment efficiency (78%) than PLA.
• Up to 96% sustained release over 24 h in PBS medium was achieved for PLGA–pNIPAM NPs.
• Ramipril release from PLGA–pNIPAM core–shell NPs was diffusion controlled.
Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) are two commonly applied biodegradable polymers for the preparation of nanocomposites used in drug-delivery systems. However, these polymers lack desirable attributes such as resistance to aggregation during long-term storage due to lyophilisation. To improve their efficacy, in this work, PLA and PLGA were encapsulated within a shell of poly(N-isopropylacrylamide) (pNIPAM) using a single emulsion technique followed by an aqueous free radical precipitation polymerisation process, yielding core–shell PLA/PLGA–pNIPAM nanocomposites. The nanocomposites were characterised using zeta potential, dynamic light scattering, and transmission electron microscopy analyses and were further applied as a delivery system for ramipril, an antihypertensive drug. The drug-loaded PLGA–pNIPAM core–shell nanoparticles exhibited a higher drug content (91%) and entrapment efficiency (78%) than their PLA counterparts. An in vitro release study of the formulations at pH 7.3 in phosphate-buffered saline indicated that PLGA was more efficient than PLA with a sustained release of 86% of ramipril from the polymer matrix within 24 h. Furthermore, to determine the release kinetics, the data were fitted to Korsmeyer–Peppas and Higuchi models; the release of ramipril from the polymer matrix followed zero-order rate kinetics and an anomalous (non-Fickian) diffusion mechanism.