Volume 40
您当前的位置:首页 > 期刊文章 > 过刊浏览 > Volumes 36-41 (2018) > Volume 40
Sciacovelli, A., Navarro, M. E., Jin, Y., Qiao, G., Zheng, L., Leng, G., . . . Ding, Y. (2018). High density polyethylene (HDPE) — Graphite composite manufactured by extrusion: A novel way to fabricate phase change materials for thermal energy storage. Particuology, 40, 131-140. https://doi.org/10.1016/j.partic.2017.11.011
High density polyethylene (HDPE) — Graphite composite manufactured by extrusion: A novel way to fabricate phase change materials for thermal energy storage
A. Sciacovelli a, M.E. Navarro a, Yi Jin b, Geng Qiao c, Lifang Zheng d, Guanghui Leng b, Li Wang d, Yulong Ding a d *
a Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham (UoB), Birmingham, B15 2TT, UK
b Global Energy Interconnection Research Institute, State Grid Corporation of China, Beijing 102209, China
c Global Energy Interconnection Research Institute Europe, State Grid Corporation of China, Berlin 10117, Germany
d UoB − USTB (University of Science & Technology Beijing) Joint Centre for Energy & Environmental Education & Research, Beijing 100081, China
10.1016/j.partic.2017.11.011
Volume 40, October 2018, Pages 131-140
Received 23 August 2017, Revised 17 November 2017, Accepted 26 November 2017, Available online 27 April 2018, Version of Record 28 July 2018.
E-mail: y.ding@bham.ac.uk

Highlights

• A composite phase change material (PCM) was studied for thermal energy storage.

• The PCM consisted of high density polyethylene and carbon graphite.

• A single screw extruder was used for continuous manufacturing of the composite PCM modules.

• An enhancement of ∼70% in thermal diffusivity of the composite PCM was demonstrated.

• Linkage between extrusion parameters and PCM thermophysical properties was elucidated.


Abstract

Thermal energy storage (TES) has the potential to facilitate the deployment of renewable energy through addressing the demand-supply mismatch, ultimately leading to the decarbonisation of heat supply. Among the TES technologies, latent heat based TES with composite phase change materials (PCMs) has shown great potential, which has attracted significant attention in recent years. However, large scale and reliable manufacturing methods for composite PCMs are still largely lacking. Here, we present a study aimed to develop, for the first time, an extrusion process capable of fabricating high density polyethylene based graphite PCM composites at a high throughput and with enhanced thermal properties. The PCM composites were fabricated under different extrusion process parameters and characterized for their thermo-physical properties by multiple techniques including differential scanning calorimetry, thermal gravitational analyzer, and Fourier transform infrared spectroscopy. The results show that the extrusion process has the potential to fabricate PCM composite bars in a continuous fashion with a manufacturing throughput higher than traditional method; the fabricated PCM composites show enhanced properties (e.g. up to +70% increase in thermal diffusivity); and there is a clear link between extrusion process parameters and PCMs properties. Microstructural analyses show a more homogeneous structure with a lower extrusion speed; whereas a high extrusion speed gives a more microscopically heterogeneous structure with visible graphite agglomerates distributed relatively homogeneous macroscopically; and a higher graphite content gives a larger agglomerate size. The results of this work suggest that the elucidation of composition–process–property relationships is crucial: for a given formulation (composition), only through fine tuning of high throughput manufacturing process can make it possible to achieve the desired performance of the PCM composites.

Graphical abstract
Keywords
Composite phase change materials; Thermal energy storage; Continuous manufacture; Composition–process–structure–property relationships