- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Ni–Ce/SAPO-34 catalyst was synthesized by incorporation and impregnation methods.
• Impregnation using aprotic solvent led to a better dispersion of metal species.
• Ni–Ce/SAPO-34(IM-DMF) showed a superior catalytic performance in the MTO reaction.
A series of mesoporous nanocrystalline silicoaluminophosphate (SAPO) zeolites (SAPO-34) were synthesized via an ultrasonic and microwave-assisted hydrothermal method in the presence of [3-(trimethoxysilyl)propyl]octadecyldimethylammonium chloride and cetyltrimethylammonium bromide surfactants as soft templates. Nickel and cerium were then doped on SAPO-34 using incorporation and impregnation methods, and all the catalysts were applied to the methanol-to-olefin (MTO) reaction. The catalysts were characterized using X-ray diffraction, field-emission scanning electron microcopy, inductively coupled plasma–atomic emission spectroscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, NH3 temperature-programmed desorption analysis, and thermogravimetric analysis. For the impregnation method, the effect of using protic or aprotic solvents as impregnation media on the physico-chemical properties of the metal-based SAPO-34 was investigated. Water and N,N-dimethylformamide (DMF) were employed as the protic and aprotic solvents, respectively. The catalyst prepared using the aprotic DMF solvent exhibited higher dispersion and lower aggregation of metal species compared with that prepared using the protic water solvent. Furthermore, the sample synthesized using the incorporation method exhibited good catalytic performance; however, the Ni–Ce/SAPO-34 sample prepared using the impregnation method and aprotic DMF solvent exhibited superior catalytic performance in the MTO reaction.