- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Ca(OH)2 fine powder was modified by adding hydrophilic silica nanoparticles (NPs).
• Taguchi method was used to optimize parameters for improving flowability of modified adsorbents.
• Size and mass percentage of silica NPs were found to be the most effective parameters.
• Use of modified adsorbent and alcohol vapors enhanced CO2 adsorption efficiency in fluidized beds.
Hydrophilic silica nanoparticles were used to enhance the fluidization behavior of Ca(OH)2 powder and its CO2 adsorption. The strong electrostatic forces were decreased by fluidizing adsorbents modified by hydrophilic SiO2 in the presence of alcohol vapors. A Taguchi experimental design was used to identify the optimal characteristic parameters of the modified adsorbents to improve their fluidization. Four parameters, including SiO2 mass percentage, type of alcohol, sieved size of SiO2, and sieved size of Ca(OH)2 particles, were selected for conducting experiments in a fluidized bed. Analysis of variance showed that sieved size and mass percentage of SiO2 nanoparticles (accounting for 73.88% and 19.01% of the total contributions, respectively) were the most significant parameters determining fluidization quality of the modified adsorbents. Fluidization experiments confirmed the effectiveness of these two parameters. Based on bed expansion results, fluidization of Ca(OH)2 modified by hydrophilic silica nanoparticles in the presence of alcohols was considerably better than that modified by hydrophobic nanoparticles. CO2 adsorption tests, which were carried out by measuring the pH variation of pure water during adsorption, revealed that improved Ca(OH)2 fluidization enhanced the carbonation reaction.