- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Heat transfer at high temperature was studied in a conical spouted bed for various heating rates.
• Heat transfer rate was well correlated with pressure fluctuation.
• Intensity of PSD peak was dependent on thermal properties of bed and gas.
Statistical analysis of pressure fluctuations in spouted beds has been used as a well-established diagnostic tool to determine bed and flow characteristics because of its smooth operation. However, in many recent and conventional applications of spouted beds such as drying, coal gasification, catalytic conversion, biomass treatment, and chemical vapor deposition, direct estimation of the heat transfer rate from the solid bed to the gas or vice versa has proven to be difficult. A variance and spectral analysis of pressure fluctuation is extended here to characterize the heat transfer phenomena in a spouted bed. In the present study, zirconia and alumina were used as the bed materials, and argon and nitrogen were used as the spouting gases. Experiments were conducted at various heating rates for different superficial gas velocities for a range of temperatures up to 300 °C. Significant changes in the gas density and viscosity with different extents of heat transfer were observed to affect the momentum diffusivity and gas–particle interaction, which in turn led to local pressure fluctuations, causing the bed to behave differently. In the present work, a novel approach is proposed to establish a link between local pressure fluctuation and the extent of heat transfer in the bed. This method shows potential for correlation of the statistics of pressure fluctuation with the thermal properties of individual solids and gases. Thus, the technique can be extended to many industrial applications for the indirect estimation of the extent of heat transfer and prediction of unknown thermal properties of products in solids or gases.