- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• A novel bimodal TEMOM coupled with large eddy simulation model was developed.
• The B-TEMOM was verified against MSM and B-QMOM.
• Nanoparticle formation and evolution in turbulent flows were investigated.
• The impact of large coherent structures on the particle dynamics was revealed.
The bimodal Taylor expansion method of moments (B-TEMOM) model scheme was developed to simulate the formation and evolution of vehicle exhaust particles. Two independent types of log-normal particle size distributions were selected in the B-TEMOM model scheme, comprising large and small particles to represent background (i.e., the surrounding environment) and vehicle exhaust particles, respectively. Concentration distributions of exhaust and background particles derived using this model scheme were verified against results from a moving sectional method and the bimodal quadrature method of moments, showing excellent agreement. The effects of vehicle tailpipe exit conditions (e.g., exhaust particle concentrations and velocity), sulfur content, and relative humidity on the evolution of particles were investigated numerically. Both two-dimensional and three-dimensional numerical simulations showed that tailpipe exit velocity and relative humidity did not greatly affect the steady-state concentrations or the diameters of particles in urban atmospheres. Although an increase in sulfur content had little effect on the particle concentration, it led to background particles with larger geometric average diameter entering the environment. This coupled CFD-B-TEMOM numerical model provides a simple but accurate and efficient method for studying bimodal aerosol dynamics.
