- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Relevant literature on multi-phase flow with particulate material as a solid phase was reviewed.
• The XDEM multi-physics and multi-scale simulation platform (XDEM-suite) was introduced.
• XDEM-suite extended the application of XDEM to estimating the thermodynamic state of each particle.
• Approaches presented were validated with experimental data.
The extended discrete element method (XDEM) multi-physics and multi-scale simulation platform is being developed at the Institute of Computational Engineering, the University of Luxembourg. The platform is an advanced multi-physics simulation technology that combines flexibility and versatility to establish the next generation of multi-physics and multi-scale simulation tools. For this purpose, the simulation framework relies on coupling various predictive tools based on an Eulerian and Lagrangian approach. The Eulerian approach represents the wide field of continuum models; the Lagrangian approach is perfect for characterising discrete phases. Continuum models thus include classical simulation tools, such as computational fluid dynamics simulation and finite element analysis, while an extended configuration of the classical discrete element method addresses the discrete (e.g., particulate) phase. Apart from predicting the trajectories of individual particles, XDEM-suite extends the application of the XDEM to estimating the thermodynamic state of each particle using advanced and optimised algorithms. The thermodynamic state may include temperature and species distributions due to chemical reaction and external heat sources. Hence, coupling these extended features with either computational fluid dynamics simulation or finite element analysis opens a wide range of applications as diverse as pharmaceuticals, agriculture, food processing, mining, construction and agricultural machinery, metals manufacturing, energy production and systems biology.