- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• The Hansen parameters for ZnO semiconductor nanoparticles were determined.
• The Hansen parameters of dry powder and a wet sediment were compared.
• Insights into particle- and ligand-induced surface properties are provided.
For most particle-based applications, formulation in the liquid phase is a decisive step, and thus, particle interactions and stability in liquid media are of major importance. The concept of Hansen solubility parameters (HSP) was initially invented to describe the interactions of (polymer) molecules and their solubility in different liquids and is increasingly being used in particle technology to describe dispersibility. Because dispersions are not thermodynamically stable, the term Hansen dispersibility parameters (HDP) is used instead of HSP (Süß, Sobisch, Peukert, Lerche, & Segets, 2018). Herein, we extend a previously developed standardized and non-subjective method for determination of Hansen parameters based on analytical centrifugation to the important class of quantum materials. As a technically relevant model system, zinc oxide quantum dots (QDs) were used to transfer our methodology to nanoparticles (NPs) with sizes below 10 nm. The results obtained using the standard procedure starting from a dried powder were compared with those obtained through redispersion from the wet sediment produced during the typical washing procedure of QDs, and drying was observed to play an important role. In conclusion, our study reveals the high potential of HDP for quantifying the interfacial properties of NPs as well as their link to dispersibility.