- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Urchin-like NiCo2S4 was synthesized through a one-step solvothermal process.
• PEG 200 was used as a solvent and shape-control agent.
• A NiCo2S4//AC asymmetric supercapacitor was fabricated.
• An energy density of 37.32 Wh/kg was obtained at a power density of 317.8 W/kg.
Nickel cobalt sulfides (NiCo2S4) have attracted considerable attention as electrode materials for supercapacitors. Herein, a sea-urchin-like NiCo2S4 material was synthesized through a one-step solvothermal process. Polyethylene glycol (PEG) 200 and thiourea were used as a shape-control agent and sulfur source for in-situ sulfuration, respectively. The urchin-like NiCo2S4 was characterized by X-ray powder diffraction, scanning electron microscopy, Brunauer–Emmett–Teller surface area, and electrochemical measurements. The resulting NiCo2S4 with ion diffusion-favored structure demonstrated remarkable electrochemical characteristics for supercapacitor with a high specific capacitance (1334 F/g at 0.5 A/g) and superior rate capability (78.1% of the original capacity from 0.5 to 20 A/g) in 6 M KOH aqueous solution. Furthermore, an asymmetric supercapacitor was assembled using NiCo2S4 as a positive electrode and activated carbon (AC) as a negative electrode. A NiCo2S4//AC device exhibited a high energy density of 37.32 Wh/kg at a power density of 317.8 W/kg with capacity retention of 91.9% and up to 2000 charge/discharge cycles at 3 A/g. The results demonstrate that the sea-urchin-like NiCo2S4 has potential applications in supercapacitors.