- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Three-dimensional randomly packed granular filtration model was built.
• Grade collection efficiency increased linearly with lg(St) when St ≥ 0.009.
• Introduction of solid particles to packed bed could enhance heat transfer.
• Heat-transfer enhancement increased approximately linearly with particle loading.
• Nusselt number correlation was obtained under low Reynolds number conditions.
The collection mechanism and heat-transfer characteristics of a packed granular filter were investigated using a three-dimensional randomly packed granular filter model. The bridging method was introduced to optimize the grids of contact points between granules. The influences of granular bed depth, gas velocity, and gas temperature on grade collection efficiency were investigated. The results indicated that a decrease of temperature improved collection efficiency when the particle diameter was greater than 5 μm. The grade collection efficiency maintained a stable value when the Stokes number, St, was less than 0.009, but increased linearly with lg(St) when St ≥ 0.009. A logarithmic mean temperature difference method was used to obtain overall heat-transfer coefficients of gas–solid two-phase flow through the packed granular filter. The results showed that convective heat transfer was enhanced due to the introduction of solid particles in the bed. The overall heat-transfer coefficient increased approximately linearly with an increase in particle loading ratio. The Nusselt number was related to the Reynolds number, the Archimedes number, and the particle loading ratio.