- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Filtration influences hydrocyclone performance.
• Hydrocyclone performance depends on location of porous medium.
• Filtering hydrocyclones exhibit higher capacities at the same pressure drop.
• FCyCoH-OT1 was optimized for efficiency: [Di/Dc Do/Dc L/Dc θ] = [0.16 0.19 7.3 9.0°].
• FCyCoH-OT2 was optimized for Euler number: [Di/Dc Do/Dc L/Dc θ] = [0.26 0.35 6.7 20.0°].
Hydrocyclones have versatile applications in various industrial processes. They functionn on the principle of centrifugal separation to remove a dispersed phase (particles or drops) from a continuous phase (fluid). In unconventional filtering hydrocyclones, the separation efficiency and energy costs have been improved by combining filtration with centrifugal separation. This work investigated experimentally the effect of incorporating a cylinder and a porous cone in a conventional hydrocyclone. It also evaluated the effects of the main geometric dimensions of the separator on the hydrocyclone performance. A differential-evolution algorithm was applied to optimize the hydrocyclone performance, which was represented as the maximum total efficiency and minimum Euler number. The experimental results validated the optimization results and showed that hydrocyclones with optimized geometries exhibited higher total efficiencies (89.59%) and lower Euler numbers (582) than hydrocyclones with other experimental configurations.