- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Pressure drop of the bed is slightly higher in smaller beds.
• Pressure-fluctuation amplitude near bed surface increases with decreasing bed size.
• Kolmogorov entropy and dominant frequency both increase with increasing bed size.
• Kolmogorov entropy of pressure fluctuations are sensitive to changes in bed size.
Pressure fluctuations in four bubbling fluidized beds having different bed sizes (three square cross-sections of 5, 10, and 15 cm in side length, and one rectangular cross-section of 2 × 10 cm2) were measured at four axial positions (P1, P2, P3, and P4). Several characteristic indicators of the flow specifically of the pressure were calculated. In terms of these characteristic indicators, the effect of bed size on flow behavior was investigated. The results show that in the fully fluidized state, the pressure drop is slightly higher in smaller beds, but the pressure drops in the 10- and 15-cm beds are close. The 15-cm bed has the lowest pressure-fluctuation amplitude. The amplitudes at P1 and P2 in the lower part of the bed are very close for bed sizes below 10 cm, but the amplitude at P3 near the bed surface increases with decreasing bed size. No general trend was observed regarding the effect of bed size on skewness and kurtosis of the pressure for all four axial heights. For the average, standard deviation, skewness, and kurtosis of the pressure at P4, the values are close for the two small beds (2 × 10 and 5 × 5 cm2) and the two large beds (10 × 10 and 15 × 15 cm2), and hence the effect of bed size separates the beds into two groups. In the fully fluidized state, for P1, P2, and P3, the Kolmogorov entropy and the dominant frequency both increase with increasing bed size, but in the pseudo-2D bed both are between the values for the 5- and 10-cm beds.