- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• We study shear responses of particle mixtures with rolling friction coefficient μr.
•Anisotropies reveal the variations of q/p' with μr and fine content (FC).
• Mixtures of coarse particles with μr = 0.5 and gravel particles are compared.
• Rolling resistance weakens the relationship q/p' =kacsn when FC = 30% and 40%.
Shear responses of dense granular mixtures of spherical coarse particles with the rolling resistance and spherical fine particles are studied via triaxial compression tests using the discrete element method. The macroscale responses (shear strength and dilatancy) are examined. Comparing the results with those in the literature indicates that granular mixtures with a rolling resistance coefficient of 0.5 have similar macroscale responses to those of gravel-shaped coarse particle mixtures. We quantify the microscale responses including the percentage contributions of contact types, partial coordination number, average particle rotation, average degree of interlocking, and local structural properties. A detailed analysis of the force–fabric anisotropy reveals the mechanisms of the variations in the shear strength with the rolling resistance coefficient and the fines content. The mechanism of the variation in the shear strength with the fines content for granular mixtures with a rolling resistance coefficient of 0.5 is different from that for gravel-shaped coarse particle mixtures. Finally, we find that a rolling resistance linear model weakens the linear relationship between the stress ratio and the fabric anisotropy of strong and non-sliding contacts when the fines content is 30% and 40%.