- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• An equation was proposed to predict initial void ratios of samples.
• Effect of coarse particle roundness on friction angles of mixed soils was studied.
• Coarse particle roundness hardly affects the classification of mixed soils.
• Main forms of coarse–coarse contacts were revealed at the critical state for FC = 30%.
• Roundness and rolling resistance affect mixed soil strengths by various mechanisms.
The coarse particles in mixed soils can be cobbles or gravels, with the main difference being their roundness (an indicator describing particle shape characteristics at an intermediate scale). The influence of coarse particle shape (i.e., roundness) on the macroscopic and microscopic shear behaviours of cohesionless mixed soils with various fines contents (FCs) was investigated via the discrete element method in this study. The shapes of coarse particles were formed using the rotation-invariant spherical harmonic method proposed by previous investigators. An equation was proposed to predict the initial void ratios of samples in this study. A decrease in the roundness of coarse particles can increase the peak friction angle (FC ≤ 40%) and critical friction angle (FC ≤ 30%). As the roundness of coarse particles decreases, the peak dilatancy angle initially increases and then decreases (FC ≤ 20%). Furthermore, it was found that the roundness of coarse particles hardly affects the classification of cohesionless mixed soils, as determined by probing the percentage contributions of coarse–coarse, coarse–fine, and fine–fine contacts. When cohesionless mixed soils change from an underfilled structure to an interactive-underfilled structure at the critical state, the main forms of coarse–coarse contacts were discovered. Additionally, the force-fabric anisotropy mechanisms of the influences of the roundness and rolling resistance coefficient of coarse particles on the shear strengths of cohesionless mixed soils were found to be different.