- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Nanosecond pulsed plasma with a DC bias gives effective remediation of oil aerosols.
• 99.9% particulate remediation was achieved for polyaromatic olefin PAO-4.
• Over 1260-fold reduction in particulate concentration was achieved for soybean oil.
It is now recognized that nanoscale particulate matter (PM) represents a substantial health hazard for our society, including PM from restaurant smoke. In this study, we explored the use of a transient pulsed plasma in conjunction with an applied DC bias to treat oil aerosols that closely resemble restaurant (i.e., charbroiler) smoke emissions. For polyaromatic olefin PAO-4 and soybean oil, we found that a three-order-of-magnitude reduction in particulates (i.e., 99.9% remediation) could be achieved with this system. Here, the plasma discharge was produced in a 4-in.-diameter cylindrical reactor with a 5–10 ns high voltage (30 kV) pulse generator together with applied DC bias voltages up to 10 kV. The distribution of nanoparticle sizes was measured using a scanning mobility particle sizer (SMPS) with diameter centered around 225 nm. Here, the main mechanism of remediation occurs in a two-step process in which the oil nanoparticles are first ionized by the free electrons and free radicals in the plasma and then the charged particles are swept out to the sidewalls of the reactor by the applied DC potential. We believe this general approach opens up new degrees of freedom in the design of electrostatic oil aerosol pollution control devices.