- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Internals and sintered distributor result in a more uniform solids distribution.
• More small bubbles and a higher bed expansion are formed by installing internals.
• Smaller-opening internals promote the changeover between dilute phase and dense.
• Sintered plate distributor gives a steady fluidization similar to internals.
• Smaller Uc can be obtained under sintered plate distributor or mesh type internals.
The effects of internals and gas distributors on the local dynamics of the bubbles in the conventional gas–solid fluidized bed were studied. Mesh-type internals with different opening areas (50%, 70% and 90%) and different arrangements (two-layer and four-layer); and a sintered plate with a smaller pore size (1 μm) and a perforated plate with a larger pore size as distributors were investigated. Differential pressure drops and local solids holdups were measured under various superficial gas velocities to compare the performances of the different types of internals and distributors. The instantaneous solids holdup signals from the optical fibre probe were used to further examine the local bubble dynamics in detail. Smaller bubbles were found, with the installation of internals or using the sintered plate, resulting in lower pressure drops and a higher bed expansion. Internals with reduced opening area or distributor with smaller pore size further leads to a higher changeover rate between the bubbles and dense phase, both axially and radially, and hence a better gas–solid contacting and an earlier transition to the turbulent flow regime of the bed.