- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• The critical state lines are found to be path-dependent.
• A higher critical strength for AC than for AE under a given cell pressure is noted.
• Critical deviator fabric is larger for axial compression than for axial extension.
The critical state soil mechanics (CSSM) framework has been widely used across a range of problems in geomechanics involving complex loading conditions. However, the uniqueness of the critical state has been disputed for many years and it remains a controversial issue. Motivated by previous investigations, a series of discrete element method (DEM) simulations were performed under both axial compression (AC) and axial extension (AE) stress paths. All samples were isotropically compressed at varying mean normal effective stresses (confining pressures) and sheared to a large axial strain of approximately 60%. It is found that there exist unique values of critical void ratios and stress ratios under critical state, which are independent of the samples’ initial packings but dependent on stress paths. And the critical strength (stress ratio) for the AC stress path tests is higher than that for the AE stress path. The critical state lines (CSLs) are found to path-dependent but unique for each stress path. A unique linear relationship between the critical coordination numbers and critical void ratios is identified under the AC and AE stress paths respectively, but such a relationship depends on the stress paths. It is also found that there exist unique values of microscopic parameters in terms of deviator fabric under critical state, which are independent of the samples’ initial packings but dependent on stress paths. All these simulation results lead to the conclusion of non-uniqueness of CSLs from both macroscopic and microscopic viewpoints.