- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Flower-like MoS2 microstructures were prepared by dispersing MoS2 nanosheets.
• MoS2/BiOAc heterojunctions were constructed using a green grinding method.
• Mechanical force ensured intimate interfacial contact between MoS2 and BiOAc.
• MoS2/BiOAc displayed excellent photocatalytic activity for MG, MB, and TC removal.
Bismuth oxide subacetate (CH3COO(BiO); BiOAc) with a large band gap energy (Eg) was first applied as an ultraviolet-light-driven photocatalyst in our group. MoS2 nanoflowers have been used to improve the visible-light photocatalytic activity of bismuth-based semiconductors with wide Eg because of their good visible-light response. Herein, the grinding-assisted solid-state reaction method was used to prepare a MoS2/BiOAc composite to improve the visible-light photoreactivity of BiOAc. As compared with commonly used wet chemical and hydrothermal routes, the grinding-assisted synthesis facilitated heterogeneous nucleation, which was beneficial to achieving close contact and subsequent charge transfer and separation at the interfaces, resulting in enhanced photocatalytic activity for malachite green, methylene blue, and antibiotic tetracycline degradation under visible-light irradiation. Notably, the dispersion in the mixing solution of ethanol and water (v/v=1) of MoS2 nanosheets induced self-assembly into flower-like nanostructures, thus enhancing the photocatalytic activity of MoS2/BiOAc. A possible mechanism for visible-light photocatalysis of MoS2/BiOAc was proposed.