- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• The liquid–solid–solid system in a draft-tube stirred reactor is investigated.
• The CFD model is verified by the experimental concentration distribution.
• The influence of the draft tube on the flow field is studied.
• The suspension is evaluated using the concentration standard deviation.
• Power consumption of a flow field with a draft tube is lower.
Experiment and simulation were used to study the flow fields of a liquid–solid–solid three-phase system in a draft-tube stirred reactor with a six-flat-bladed turbine impeller (BT) and a 45° pitched six-bladed upflow turbine impeller (PBTU45). The computational fluid dynamics (CFD) formulation was based on a 3D Eulerian multi-fluid model along with a renormalization group (RNG) k-ε turbulence model, which took into account the inter-phase momentum exchange between different phases. The CFD model was validated using experimental data, and the suspension quality was validated by determining the standard deviation of the solid concentration. Good solid suspension was achieved in flow fields agitated by the BT impeller at low impeller speeds. The draft tube adversely affected solid dispersion at most impeller speeds. In flow fields agitated by the PBTU45 impeller, good solid suspension required a faster impeller speed. The suspension quality with the draft tube was better than that without the draft tube under most operating conditions. The power consumption of the BT or PBTU45 impeller with the draft tube was less than that without the draft tube at most impeller speeds.