- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Hybrid composite cathode materials are applied to lithium–sulfur batteries.
• Electrochemical performance is influenced by intrinsic conductivity and volume expansion.
• Structure, size, and components of hybrid cathode materials are considered.
• Specially structured materials are designed for lithium–sulfur batteries.
Owing to the extensive use of fossil fuels for energy, environmental problems are becoming increasingly severe. Therefore, renewable clean energy sources must be urgently developed. As an environmentally friendly electrochemical energy-storage system, lithium-ion batteries (LIBs) are widely used in portable devices, electric vehicles, and medical equipment. However, owing to their high cost and low theoretical energy density, LIBs are far from meeting the current energy demand. Lithium–sulfur batteries (LSBs) (wherein lithium metal and sulfur are the anode and cathode, respectively) are one of the most valuable secondary batteries because of their high theoretical energy density (∼2600 Wh kg−1). However, the intrinsic conductivity of sulfur cathode materials is poor, and the lithium polysulfide formed during lithiation dissolves easily. Moreover, the volumetric expansion during charging and discharging adversely affects the LSB electrochemical performance, including the rate performance, cycle life, and coulombic efficiency. Therefore, to improve the LSB electrochemical performance, various sulfur composites have been prepared using carbon materials, metallic oxides, and conductive polymers, and various composite cathode materials recently developed for application to LSBs were reviewed. Finally, research directions were proposed for modifying LSB cathode materials.