- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Application of MP-PIC method to pilot-scale cold model circulating fluidized beds.
• Application of an EMMS based drag model for Geldart B particles.
• Major parameters of EMMS based drag model in good agreement with the experiments.
• EMMS model is able to predict a dense bottom zone.
In this study the multiphase particle-in-cell (MP-PIC) method is used for the simulation of two pilot-scale circulating fluidized beds (CFBs) with quartz sand belonging to Geldart’s group B as bed material. The simulations were performed using a homogeneous drag model as well as a structure dependent drag model based on the energy minimization multi-scale method (EMMS). The results are compared with experimental data from literature as well as experiments. The simulations with the EMMS based drag model show a good agreement of the time-averaged axial solids concentration, circulation rate and riser pressure drop. Furthermore, a lower grid sensitivity is observed compared to the homogeneous drag model. In contrast to the conventional drag model a dense bottom zone is predicted by the EMMS based drag model. An overprediction of the solid concentration in the dense bottom zone is presumably due to an overprediction of the cluster diameter that is calculated using an empirical cluster diameter correlation. This shows the necessity for a new meso-scale cluster correlation for the simulation of Geldart B particles. Furthermore, the results of the time-averaged radial solids concentration differ from the expectations of a core-annulus flow indicating that a mesh refinement at the walls is necessary. Finally, the importance of using a realistic particle size distribution is identified.