- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• The slat pitch is an key parameter to determine the forces acting on the baffles.
• The gas cushion plays an important role in reducing forces on the baffles.
• The forces on the slats are quite different due to the guiding role of the baffles.
Effects of some important structural parameters, i.e. slat pitch, and layout position, on dynamic forces acting on the baffles were examined in the fluidized bed of FCC particles operating under different superficial gas velocities. The experimental baffles were made of multiple inclined slats. We found that the forces acting on the baffles decreased significantly with reducing pitch between the slats. For the baffles with a small slat pitch, the forces acting on the baffles increased slightly and then decreased with increasing superficial gas velocity, which is very different from the measured results of a single slat or tube immersed in fluidized beds. The different results are greatly related to the appearance of the “gas cushion” beneath the baffles, whose height increases with increasing superficial gas velocity. On the other hand, a region with stronger particle circulation induced by the inclined slat array was observed in the experiments. The slat near the wall and located below the region of downward-flowing particles was found to be subjected to the severest forces. Therefore, the slats located in similar locations of industrial baffles are suggested to be reinforced to increase their structural strength.