- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Gelatin/Sodium Alginate complex microspheres (GSMs) were fabricated through SPG membrane emulsification.
• GSMs induced in situ biomimetic mineralization and hybrid microspheres GSHMs were obtained.
• GSHMs were utilized in enzyme immobilization and exhibited obvious improvement.
The organic-inorganic hybrid composites displayed great potential for biotechnological and biomedical application. In this research, a gelatin/alginate/silica hybrid microsphere was developed by a synergy of membrane emulsification process and biomimetic mineralization method. The gelatin was mixed and complexed with alginate solutions (water phase). The water phase was extruded through a Shirasu Porous Glass (SPG) membrane, and then was crosslinked, which formed gelatin/alginate microspheres. The biomimetic mineralization was occurred in situ by immersing gelatin/alginate complex in a Na2SiO3 solution, while silica was formed around the organic microspheres, resulting in the final gelatin/alginate/silica hybrid microspheres. These microspheres were characterized by SEM, TEM, EDS, TGA/DTA, and DSC. The hybrid microcapsules present a more than 40% mass fraction of the inorganic component, and displayed superior swelling resistance to biopolymer complex microspheres. Glycerol dehydrogenase (GlyDH) was immobilized in the obtained novel gelatin/alginate-silica hybrid microspheres as the model enzyme. Due to the protective effect of carriers, the pH tolerance stability, storage and recycling stability of the immobilized GlyDH were all improved in comparison with free GlyDH.