- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Developed model for fixed and fluidized bed adsorption of trichloroethylene on activated carbon.
• Executed parameter optimization based numerical experimentation algorithm.
• Executed linear driving force based model using open source computational solvers.
• Determined empirical and experimental model values for different process parameters.
• Defined a dimensionless number ξ▔ and evaluated for different process parameters.
Trichloroethylene (TCE) is largely used in industries as a cleaning and degreasing solvent. TCE is a potential carcinogen and is known to cause organ damage when exposed to prolonged higher concentrations. Numerical simulation of fixed and fluidized bed adsorption of TCE can help in the development of efficient adsorption processes to prevent industrial workers in the vicinity from acute TCE exposure. In the present work, a parametric optimization based numerical experimentation algorithm is implemented by open-source computational solvers to model fixed and fluidized bed adsorption of trichloroethylene vapors on activated carbon. The algorithm optimizes four parameters pertaining to linear driving force (LDF) formulation of surface barrier and microporous diffusion. The optimized parameters were utilized to evaluate ξ, a dimensionless number defined as the temporal and spatial average ratio of surface barrier diffusion resistance to microporous diffusion resistance. The average value of ξ is 0.139 for fixed bed operation (u/umf = 0.7), 1.130 for fluidized bed operation (u/umf = 1), 4.436 for fluidized bed operation (u/umf = 1.5) and 6.317 for fluidized bed operation (u/umf = 2). Therefore, the dimensionless number ξ may serve to predict the extent of change in amount adsorbed per unit adsorbent mass with change in fluidization velocity.