- Volumes 84-95 (2024)
-
Volumes 72-83 (2023)
-
Volume 83
Pages 1-258 (December 2023)
-
Volume 82
Pages 1-204 (November 2023)
-
Volume 81
Pages 1-188 (October 2023)
-
Volume 80
Pages 1-202 (September 2023)
-
Volume 79
Pages 1-172 (August 2023)
-
Volume 78
Pages 1-146 (July 2023)
-
Volume 77
Pages 1-152 (June 2023)
-
Volume 76
Pages 1-176 (May 2023)
-
Volume 75
Pages 1-228 (April 2023)
-
Volume 74
Pages 1-200 (March 2023)
-
Volume 73
Pages 1-138 (February 2023)
-
Volume 72
Pages 1-144 (January 2023)
-
Volume 83
-
Volumes 60-71 (2022)
-
Volume 71
Pages 1-108 (December 2022)
-
Volume 70
Pages 1-106 (November 2022)
-
Volume 69
Pages 1-122 (October 2022)
-
Volume 68
Pages 1-124 (September 2022)
-
Volume 67
Pages 1-102 (August 2022)
-
Volume 66
Pages 1-112 (July 2022)
-
Volume 65
Pages 1-138 (June 2022)
-
Volume 64
Pages 1-186 (May 2022)
-
Volume 63
Pages 1-124 (April 2022)
-
Volume 62
Pages 1-104 (March 2022)
-
Volume 61
Pages 1-120 (February 2022)
-
Volume 60
Pages 1-124 (January 2022)
-
Volume 71
- Volumes 54-59 (2021)
- Volumes 48-53 (2020)
- Volumes 42-47 (2019)
- Volumes 36-41 (2018)
- Volumes 30-35 (2017)
- Volumes 24-29 (2016)
- Volumes 18-23 (2015)
- Volumes 12-17 (2014)
- Volume 11 (2013)
- Volume 10 (2012)
- Volume 9 (2011)
- Volume 8 (2010)
- Volume 7 (2009)
- Volume 6 (2008)
- Volume 5 (2007)
- Volume 4 (2006)
- Volume 3 (2005)
- Volume 2 (2004)
- Volume 1 (2003)
• Calculation model for the specific power consumption is established.
• Influence of particle parameters on minimum specific power consumption is analysed.
• Optimal transport concentration in different working conditions is calculated.
• Optimal transport concentration of broad-graded slurry is approximately 50%.
Slurry pipeline transport is widely used in several industrial processes. Calculating the specific power consumption (SPC) and determining the best working conditions are important for the design and operation of transportation systems. Based on the Shanghai Jiao Tong University high-concentration multi-sized slurry pressure drop (SJTU-HMSPD) pipeline-resistance-calculation model, the SJTU-SPC model for calculating the power required to transport a unit volume of solid materials over a unit pipeline length is established for a slurry transport system. The said system demonstrates a uniformity coefficient in the 1.26–7.98 range, median particle size of 0.075–4 mm, particle volume concentration of 10–60%, and pipeline diameter of 0.203–0.8 m. The results obtained were successfully verified against existing experimental data. The influence of parameters, such as particle-gradation uniformity coefficient, median particle size, pipe diameter, and particle volume concentration, on the SPC were analysed. The results revealed that the greater is the uniformity coefficient, the smaller is the minimum specific energy consumption and the larger the optimal transport concentration for a constant, median particle size slurry. As observed, the optimal transport concentration for broad-graded sand equalled approximately 48%. These results supplement the conclusions of existing research, indicating that the optimal transport concentration is approximately 30% and provides theoretical support for high concentration transportation of broad graded slurry.